Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 155(3): 2241-2246, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535629

RESUMO

Auditory brainstem responses (ABRs) were measured at 57 kHz in two dolphins warned of an impending intense tone at 40 kHz. Over the course of testing, the duration of the intense tone was increased from 0.5 to 16 s to determine if changes in ABRs observed after cessation of the intense sound were the result of post-stimulatory auditory fatigue or conditioned hearing attenuation. One dolphin exhibited conditioned hearing attenuation after the warning sound preceding the intense sound, but little evidence of post-stimulatory fatigue after the intense sound. The second dolphin showed no conditioned attenuation before the intense sound, but auditory fatigue afterwards. The fatigue was observed within a few seconds after cessation of the intense tone: i.e., at time scales much shorter than those in previous studies of marine mammal noise-induced threshold shifts, which feature measurements on the order of a few minutes after exposure. The differences observed between the two individuals (less auditory fatigue in the dolphin that exhibited the conditioned attenuation) support the hypothesis that conditioned attenuation is a form of "self-mitigation."


Assuntos
Fadiga Auditiva , Golfinhos , Animais , Audição , Som , Fadiga
2.
J Acoust Soc Am ; 155(1): 274-283, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215217

RESUMO

Echolocating bats and dolphins use biosonar to determine target range, but differences in range discrimination thresholds have been reported for the two species. Whether these differences represent a true difference in their sensory system capability is unknown. Here, the dolphin's range discrimination threshold as a function of absolute range and echo-phase was investigated. Using phantom echoes, the dolphins were trained to echo-inspect two simulated targets and indicate the closer target by pressing a paddle. One target was presented at a time, requiring the dolphin to hold the initial range in memory as they compared it to the second target. Range was simulated by manipulating echo-delay while the received echo levels, relative to the dolphins' clicks, were held constant. Range discrimination thresholds were determined at seven different ranges from 1.75 to 20 m. In contrast to bats, range discrimination thresholds increased from 4 to 75 cm, across the entire ranges tested. To investigate the acoustic features used more directly, discrimination thresholds were determined when the echo was given a random phase shift (±180°). Results for the constant-phase versus the random-phase echo were quantitatively similar, suggesting that dolphins used the envelope of the echo waveform to determine the difference in range.


Assuntos
Golfinho Nariz-de-Garrafa , Quirópteros , Ecolocação , Animais , Acústica , Espectrografia do Som
3.
J Acoust Soc Am ; 154(3): 1746-1756, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37712749

RESUMO

As the only living species within the odobenid lineage of carnivores, walruses (Odobenus rosmarus) have no close relatives from which auditory information can be extrapolated. Sea lions and fur seals in the otariid lineage are the nearest evolutionary outgroup. To advance understanding of odobenid and otariid hearing, we conducted behavioral testing with two walruses and one California sea lion (Zalophus californianus). Detection thresholds for airborne sounds were measured from 0.08 to at least 16 kHz in ambient noise conditions and then re-measured in the presence of octave-band white masking noise. Walruses were more sensitive than the sea lion at lower frequencies and less sensitive at higher frequencies. Critical ratios for the walruses ranged from 20 dB at 0.2 kHz to 32 dB at 10 kHz, while critical ratios for the sea lion ranged from 16 dB at 0.2 kHz to 35 dB at 32 kHz. The masking values for these species are comparable to one another and to those of terrestrial carnivores, increasing by about 3 dB per octave with increasing frequency. Despite apparent differences in hearing range and sensitivity, odobenids and otariids have a similar ability to hear signals in noisy conditions.


Assuntos
Leões-Marinhos , Animais , Morsas , Audição , Evolução Biológica , Som
4.
J Acoust Soc Am ; 154(2): 1324-1338, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37650783

RESUMO

Temporary threshold shift (TTS) was measured in bottlenose dolphins after 1-h exposures to 1/6-octave noise centered at 0.5, 2, 8, 20, 40, and 80 kHz. Tests were conducted in netted ocean enclosures, with the dolphins free-swimming during noise exposures. Exposure levels were estimated using a combination of video-based measurement of dolphin position, calibrated exposure sound fields, and animal-borne archival recording tags. Hearing thresholds were measured before and after exposures using behavioral methods (0.5, 2, 8 kHz) or behavioral and electrophysiological [auditory brainstem response (ABR)] methods (20, 40, 80 kHz). No substantial effects of the noise were seen at 40 and 80 kHz at the highest exposure levels. At 2, 8, and 20 kHz, exposure levels required for 6 dB of TTS (onset TTS exposures) were similar to previous studies; however, at 0.5 kHz, onset TTS was much lower than predicted values. No clear relationships could be identified between ABR- and behaviorally measured TTS. The results raise questions about the validity of current noise exposure guidelines for dolphins at frequencies below ∼1 kHz and how to accurately estimate received noise levels from free-swimming animals.


Assuntos
Golfinho Nariz-de-Garrafa , Animais , Potenciais Evocados Auditivos do Tronco Encefálico , Natação
5.
J Acoust Soc Am ; 154(2): 1287-1298, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37646472

RESUMO

Studies of marine mammal temporary threshold shift (TTS) from impulsive sources have typically produced small TTS magnitudes, likely due to much of the energy in tested sources lying below the subjects' range of best hearing. In this study of dolphin TTS, 10-ms impulses centered at 8 kHz were used with the goal of inducing larger magnitudes of TTS and assessing the time course of hearing recovery. Most impulses had sound pressure levels of 175-180 dB re 1 µPa, while inter-pulse interval (IPI) and total number of impulses were varied. Dolphin TTS increased with increasing cumulative sound exposure level (SEL) and there was no apparent effect of IPI for exposures with equal SEL. The lowest TTS onset was 184 dB re 1 µPa2s, although early exposures with 20-s IPI and cumulative SEL of 182-183 dB re 1 µPa2s produced respective TTS of 35 and 16 dB in two dolphins. Continued testing with higher SELs up to 191 dB re 1 µPa2s in one of those dolphins, however, failed to result in TTS greater than 14 dB. Recovery rates were similar to those from other studies with non-impulsive sources and depended on the magnitude of the initial TTS.


Assuntos
Golfinho Nariz-de-Garrafa , Animais , Audição , Frequência Cardíaca , Som
6.
J Acoust Soc Am ; 154(2): 739-750, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37556567

RESUMO

Frequency-modulated "chirp" stimuli that offset cochlear dispersion (i.e., input compensation) have shown promise for increasing auditory brainstem response (ABR) amplitudes relative to traditional sound stimuli. To enhance ABR methods with marine mammal species known or suspected to have low ABR signal-to-noise ratios, the present study examined the effects of broadband chirp sweep rate and level on ABR amplitude in bottlenose dolphins and California sea lions. "Optimal" chirps were designed based on previous estimates of cochlear traveling wave speeds (using high-pass subtractive masking methods) in these species. Optimal chirps increased ABR peak amplitudes by compensating for cochlear dispersion; however, chirps with similar (or higher) frequency-modulation rates produced comparable results. The optimal chirps generally increased ABR amplitudes relative to noisebursts as threshold was approached, although this was more obvious when sound pressure level was used to equate stimulus levels (as opposed to total energy). Chirps provided progressively less ABR amplitude gain (relative to noisebursts) as stimulus level increased and produced smaller ABRs at the highest levels tested in dolphins. Although it was previously hypothesized that chirps would provide larger gains in sea lions than dolphins-due to the lower traveling wave speed in the former-no such pattern was observed.


Assuntos
Golfinho Nariz-de-Garrafa , Leões-Marinhos , Animais , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Estimulação Acústica/métodos , Cóclea/fisiologia , Limiar Auditivo/fisiologia
7.
J Acoust Soc Am ; 153(6): 3324, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37328949

RESUMO

The ability of bottlenose dolphins to detect changes in echo phase was investigated using a jittered-echo paradigm. The dolphins' task was to produce a conditioned vocalization when phantom echoes with fixed echo delay and phase changed to those with delay and/or phase alternated ("jittered") on successive presentations. Conditions included: jittered delay plus constant phase shifts, ±45° and 0°-180° jittered phase shifts, alternating delay and phase shifts, and random echo-to-echo phase shifts. Results showed clear sensitivity to echo fine structure, revealed as discrimination performance reductions when jittering echo fine structures were similar, but envelopes were different, high performance with identical envelopes but different fine structure, and combinations of echo delay and phase jitter where their effects cancelled. Disruption of consistent echo fine structure via random phase shifts dramatically increased jitter detection thresholds. Sensitivity to echo fine structure in the present study was similar to the cross correlation function between jittering echoes and is consistent with the performance of a hypothetical coherent receiver; however, a coherent receiver is not necessary to obtain the present results, only that the auditory system is sensitive to echo fine structure.


Assuntos
Golfinho Nariz-de-Garrafa , Ecolocação , Animais , Estimulação Acústica , Imagens de Fantasmas
8.
J Acoust Soc Am ; 153(1): 496, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36732272

RESUMO

All species of toothed whales studied to date can learn to reduce their hearing sensitivity when warned of an impending intense sound; however, the specific conditions under which animals will employ this technique are not well understood. The present study was focused on determining whether dolphins would reduce their hearing sensitivity in response to an intense tone presented at a fixed rate but increasing level, without an otherwise explicit warning. Auditory brainstem responses (ABRs) to intermittent, 57-kHz tone bursts were continuously measured in two bottlenose dolphins as they were exposed to a series of 2-s, 40-kHz tones at fixed time intervals of 20, 25, or 29 s and at sound pressure levels (SPLs) increasing from 120 to 160 dB re 1 µPa. Results from one dolphin showed consistent ABR attenuation preceding intense tones when the SPL exceeded ∼140-150 dB re 1 µPa and the tone interval was 20 s. ABR attenuation with 25- or 29-s intense tone intervals was inconsistent. The second dolphin showed similar, but more subtle, effects. The results show dolphins can learn the timing of repetitive noise and may reduce their hearing sensitivity if the SPL is high enough, presumably to "self-mitigate" the noise effects.


Assuntos
Golfinho Nariz-de-Garrafa , Audição , Animais , Estimulação Acústica/métodos , Limiar Auditivo/fisiologia , Audição/fisiologia , Ruído , Golfinho Nariz-de-Garrafa/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia
9.
J Acoust Soc Am ; 152(3): 1795, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36182330

RESUMO

Previous studies suggested that dolphins perceive echo spectral features on coarse (macrospectrum) and fine (microspectrum) scales. This study was based on a finding that these auditory percepts are, to some degree, dependent on the dolphin's ∼250-µs auditory temporal window (i.e., "critical interval"). Here, two dolphins were trained to respond on passively detecting a simulated "target" echo complex [a pair of echo "highlights" with a characteristic 120-µs inter-highlight interval (IHI)]. This target had unique micro- and macrospectral features and was presented among "distractor" echoes with IHIs from 50 to 500 µs (i.e., microspectra) and various highlight durations (i.e., macrospectra). Following acquisition of this discrimination task, probe echo complexes with the macrospectrum of the target but IHIs matching the distractors were infrequently presented. Both dolphins initially responded more often to probes with IHIs of 80-200 µs. Response strategies diverged with increasing probe presentations; one dolphin responded to a progressively narrower range of probe IHIs while the second increased response rates for probes with IHIs > 250 µs. These results support previous conclusions that perception of macrospectra for complex echoes is nonconstant as the IHI decreases below ∼100 µs, but results approaching and exceeding 250 µs-the temporal window upper boundary-were more ambiguous.


Assuntos
Golfinho Nariz-de-Garrafa , Ecolocação , Animais , Golfinho Nariz-de-Garrafa/fisiologia , Ecolocação/fisiologia
10.
J Acoust Soc Am ; 151(5): 3070, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35649923

RESUMO

Cochlear dispersion causes increasing delays between neural responses from high-frequency regions in the cochlear base and lower-frequency regions toward the apex. For broadband stimuli, this can lead to neural responses that are out-of-phase, decreasing the amplitude of farfield neural response measurements. In the present study, cochlear traveling-wave speed and effects of dispersion on farfield auditory brainstem responses (ABRs) were investigated by first deriving narrowband ABRs in bottlenose dolphins and California sea lions using the high-pass subtractive masking technique. Derived-band ABRs were then temporally aligned and summed to obtain the "stacked ABR" as a means of compensating for the effects of cochlear dispersion. For derived-band responses between 8 and 32 kHz, cochlear traveling-wave speeds were similar for sea lions and dolphins [∼2-8 octaves (oct)/ms for dolphins; ∼3.5-11 oct/ms for sea lions]; above 32 kHz, traveling-wave speed for dolphins increased up to ∼30 oct/ms. Stacked ABRs were larger than unmasked, broadband ABRs in both species. The amplitude enhancement was smaller in dolphins than in sea lions, and enhancement in both species appears to be less than reported in humans. Results suggest that compensating for cochlear dispersion will provide greater benefit for ABR measurements in species with better low-frequency hearing.


Assuntos
Golfinho Nariz-de-Garrafa , Leões-Marinhos , Estimulação Acústica , Animais , Golfinho Nariz-de-Garrafa/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Tempo de Reação/fisiologia
11.
Behav Processes ; 194: 104561, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34838900

RESUMO

Bottlenose dolphin signature whistles are characterized by distinctive frequency modulation over time. The stable frequency contours of these whistles broadcast individual identity information. Little is known however, about whether or not the amplitude contour is also stereotyped. Here, we examined the relative amplitude-time contour of signature whistle emissions from eight bottlenose dolphins (Tursiops truncatus) in the U.S. Navy Marine Mammal Program (MMP) in San Diego, CA. The results suggested that unlike the stable frequency-time contour, the amplitude-time contour of signature whistles were largely non-stereotyped, characterized by large variability across multiple whistle emissions. Relative amplitude was negatively related to log peak frequency, with more energy focused in the lower frequency bands. This trend was consistent over all eight dolphins despite having quite different signature whistle contours. This relationship led to the amplitude contours being slightly more stereotyped within than between dolphins. We propose that amplitude across signature whistle emissions may serve as an avenue for encoding additional communicative information. We encourage future studies to incorporate analyses of amplitude contours in addition to frequency contours of signature whistles in order to begin to understand what role it may play in the dolphin communication system.


Assuntos
Golfinho Nariz-de-Garrafa , Vocalização Animal , Animais , Espectrografia do Som
12.
J Acoust Soc Am ; 149(5): 3163, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34241086

RESUMO

The auditory brainstem response (ABR) to stimulus onset has been extensively used to investigate dolphin hearing. The mechanisms underlying this onset response have been thoroughly studied in mammals. In contrast, the ABR evoked by sound offset has received relatively little attention. To build upon previous observations of the dolphin offset ABR, a series of experiments was conducted to (1) determine the cochlear places responsible for response generation and (2) examine differences in response morphologies when using toneburst versus noiseburst stimuli. Measurements were conducted with seven bottlenose dolphins (Tursiops truncatus) using tonebursts and spectrally "pink" broadband noisebursts, with highpass noise used to limit the cochlear regions involved in response generation. Results for normal-hearing and hearing-impaired dolphins suggest that the offset ABR contains contributions from at least two distinct responses. One type of response (across place) might arise from the activation of neural units that are shifted basally relative to stimulus frequency and shares commonalities with the onset ABR. A second type of response (within place) appears to represent a "true" offset response from afferent centers further up the ascending auditory pathway from the auditory nerve, and likely results from synchronous activity beginning at or above the cochlear nucleus.


Assuntos
Golfinho Nariz-de-Garrafa , Potenciais Evocados Auditivos do Tronco Encefálico , Estimulação Acústica , Animais , Limiar Auditivo , Audição , Ruído/efeitos adversos
13.
Artigo em Inglês | MEDLINE | ID: mdl-34327551

RESUMO

Auditory neuroscience in dolphins has largely focused on auditory brainstem responses; however, such measures reveal little about the cognitive processes dolphins employ during echolocation and acoustic communication. The few previous studies of mid- and long-latency auditory-evoked potentials (AEPs) in dolphins report different latencies, polarities, and magnitudes. These inconsistencies may be due to any number of differences in methodology, but these studies do not make it clear which methodological differences may account for the disparities. The present study evaluates how electrode placement and pre-processing methods affect mid- and long-latency AEPs in (Tursiops truncatus). AEPs were measured when reference electrodes were placed on the skin surface over the forehead, the external auditory meatus, or the dorsal surface anterior to the dorsal fin. Data were pre-processed with or without a digital 50-Hz low-pass filter, and the use of independent component analysis to isolate signal components related to neural processes from other signals. Results suggest that a meatus reference electrode provides the highest quality AEP signals for analyses in sensor space, whereas a dorsal reference yielded nominal improvements in component space. These results provide guidance for measuring cortical AEPs in dolphins, supporting future studies of their cognitive auditory processing.


Assuntos
Golfinhos/fisiologia , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica , Nadadeiras de Animais , Animais , Vias Auditivas , Percepção Auditiva , Eletrocardiografia , Eletrodos Implantados , Eletroencefalografia , Testa , Masculino , Análise de Componente Principal , Razão Sinal-Ruído , Pele , Som
14.
JASA Express Lett ; 1(8): 081202, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-36154254

RESUMO

Two previous studies suggest that bottlenose dolphins exhibit an "oddball" auditory evoked potential (AEP) to stimulus trains where one of two stimuli has a low probability of occurrence relative to another. However, they reported oddball AEPs at widely different latency ranges (50 vs 500 ms). The present work revisited this experiment in a single dolphin to report the AEPs in response to two tones each assigned probabilities of 0.2, 0.8, and 1 across sessions. The AEP was further isolated from background EEG using independent component analysis, and showed condition effects in the 40-60 ms latency range.


Assuntos
Golfinho Nariz-de-Garrafa , Animais , Golfinho Nariz-de-Garrafa/fisiologia , Potenciais Evocados Auditivos/fisiologia
15.
Front Vet Sci ; 7: 534917, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330679

RESUMO

Correlations between inner ear morphology and auditory sensitivity in the same individual are extremely difficult to obtain for stranded cetaceans. Animals in captivity and rehabilitation offer the opportunity to combine several techniques to study the auditory system and cases of hearing impairment in a controlled environment. Morphologic and auditory findings from two beluga whales (Delphinapterus leucas) in managed care are presented. Cochlear analysis of a 21-year-old beluga whale showed bilateral high-frequency hearing loss. Specifically, scanning electron microscopy of the left ear revealed sensory cell death in the first 4.9 mm of the base of the cochlea with scar formation. Immunofluorescence microscopy of the right ear confirmed the absence of hair cells and type I afferent innervation in the first 6.6 mm of the base of the cochlea, most likely due to an ischemia. Auditory evoked potentials (AEPs) measured 1.5 years prior this beluga's death showed a generalized hearing loss, being more pronounced in the high frequencies. This individual might have had a mixed hearing loss that would explain the generalized hearing impairment. Conversely, based on AEP evaluation, her mother had normal hearing and subsequent cochlear analysis did not feature any apparent sensorineural pathology. This is believed to be the first study to compare two cochlear analysis techniques and hearing sensitivity measurements from AEPs in cetaceans. The ability to combine morphological and auditory data is crucial to validate predictions of cochlear frequency maps based on morphological features. In addition, our study shows that these three complementary analysis techniques lead to comparable results, thus improving our understanding of how hearing impairment can be detected in stranding cases.

16.
J Acoust Soc Am ; 148(5): 3360, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33261407

RESUMO

Auditory brainstem responses (ABRs) to linear-enveloped, broadband noisebursts were measured in six bottlenose dolphins to examine relationships between sound onset envelope properties and the ABR peak amplitude. Two stimulus manipulations were utilized: (1) stimulus onset envelope pressure rate-of-change was held constant while plateau pressure and risetime were varied and (2) plateau duration was varied while plateau pressure and risetime were held constant. When the stimulus onset envelope pressure rate-of-change was held constant, ABR amplitudes increased with risetime and were fit well with an exponential growth model. The model best-fit time constants for ABR peaks P1 and N5 were 55 and 64 µs, respectively, meaning ABRs reached 99% of their maximal amplitudes for risetimes of 275-320 µs. When plateau pressure and risetime were constant, ABR amplitudes increased linearly with stimulus sound exposure level up to durations of ∼250 µs. The results highlight the relationship between ABR amplitude and the integral of some quantity related to the stimulus pressure envelope over the first ∼250 µs following stimulus onset-a time interval consistent with prior estimates of the dolphin auditory temporal window, also known as the "critical interval" in hearing.


Assuntos
Golfinho Nariz-de-Garrafa , Potenciais Evocados Auditivos do Tronco Encefálico , Estimulação Acústica , Animais , Limiar Auditivo , Audição , Som
17.
J Acoust Soc Am ; 148(3): 1445, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33003839

RESUMO

Although commonly recorded as onset responses, the auditory brainstem response (ABR) can also be elicited at stimulus offset. The offset ABR has not been extensively investigated in marine mammals. Three normal hearing (NH) and three hearing impaired (HI) dolphins were assessed while fully submerged in sea water. Stimulus spectrum, level, rise/fall time (RFT), and plateau duration were manipulated. Onset and offset ABR amplitude were quantified as the rms voltage 1-7 ms following stimulus onset or offset, respectively. For the same stimulus conditions, onset and offset responses were often larger for NH than HI dolphins, and offset responses were typically smaller than onset responses. For the level series, offset response amplitude typically increased with increasing stimulus level, although offset responses were not 3 dB above the noisefloor for 113-kHz tonebursts. Increasing RFT decreased onset and offset response amplitude. For the 40-kHz tonebursts, a RFT of 32 µs produced a large amplitude offset ABR in NH dolphins. Offset responses for 113-kHz tonebursts were 3 dB above the noisefloor at the shortest RFTs. Offset responses were largest for 4 ms duration stimuli (likely due to overlapping onset and offset response analysis windows), but otherwise, offset responses changed little with increasing duration.


Assuntos
Golfinho Nariz-de-Garrafa , Caniformia , Estimulação Acústica , Animais , Limiar Auditivo , Cetáceos , Potenciais Evocados Auditivos do Tronco Encefálico
18.
J Acoust Soc Am ; 148(3): 1642, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33003846

RESUMO

Previous bottlenose dolphin studies suggest that the coarse envelope of an echo spectrum ("macrostructure") has hierarchical dominance over finer-scale spectral features ("microstructure") during synthetic echo discrimination tasks. In this study, two dolphins listened to and discriminated between underwater sound stimuli consisting of pairs of clicks with different micro- and macrostructures. After conditioning dolphins to reliably discriminate between two "anchor" stimuli with different micro- and macrostructures, probe stimuli, which contained a macrostructure identical to one of the anchor stimuli and the microstructure of the alternate anchor, were infrequently presented. Dolphins responded to probes in a manner consistent with macrostructure primacy.


Assuntos
Golfinho Nariz-de-Garrafa , Ecolocação , Estimulação Acústica , Animais , Percepção Auditiva
19.
J Acoust Soc Am ; 148(2): 1007, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32872998

RESUMO

Dolphins performing long-range biosonar tasks sometimes use "packets" of clicks, where inter-click-intervals within each packet are less than the two-way acoustic travel time from dolphin to target. The multi-echo nature of packets results in lower detection thresholds than single echoes; however, other potential benefits of packet use remain unexplored. The present study investigated whether structured temporal patterns observed in click packets impart some advantage in detecting echo-like signals embedded in noise. Two bottlenose dolphins were trained to passively listen and detect simulated packets of echoes in background noise consisting of either steady-state broadband Gaussian noise, or Gaussian noise containing randomly presented impulses similar to dolphin clicks. Four different inter-stimulus-interval (ISI) patterns (constant, random, increasing, or decreasing ISI within each packet) were tested. It was hypothesized that decreasing ISIs-found naturally in dolphin packets-would result in the lowest thresholds, while random, unlearnable patterns would result in the highest. However, no biologically significant differences in threshold were found among the four ISI patterns for either noise condition. Thus, the bottlenose dolphin's stereotypical pattern of decreasing ISI during active echolocation did not appear to provide an advantage in packet detection in this passive listening task.


Assuntos
Golfinho Nariz-de-Garrafa , Ecolocação , Acústica , Animais , Percepção Auditiva , Ruído
20.
J Acoust Soc Am ; 148(1): 374, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32752735

RESUMO

Biosonar echo delay resolution was investigated in four bottlenose dolphins (Tursiops truncatus) using a "jittered" echo paradigm, where dolphins discriminated between electronic echoes with fixed delay and those whose delay alternated (jittered) on successive presentations. The dolphins performed an echo-change detection task and produced a conditioned acoustic response when detecting a change from non-jittering echoes to jittering echoes. Jitter delay values ranged from 0 to 20 µs. A passive listening task was also conducted, where dolphins listened to simulated echoes and produced a conditioned acoustic response when signals changed from non-jittering to jittering. Results of the biosonar task showed a mean jitter delay threshold of 1.3 µs and secondary peaks in error functions suggestive of the click autocorrelation function. When echoes were jittered in polarity and delay, error functions shifted by approximately 5 µs and all dolphins discriminated echoes that jittered only in polarity. Results were qualitatively similar to those from big brown bats (Eptesicus fuscus) and indicate that the dolphin biosonar range estimator is sensitive to echo phase information. Results of the passive listening task suggested that the dolphins could not passively detect changes in timing and polarity of simulated echoes.


Assuntos
Golfinho Nariz-de-Garrafa , Quirópteros , Ecolocação , Acústica , Animais , Percepção Auditiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...